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In this article the classical analysis of the static pressure e!ect on #uttering
panels is extended to cases of pulse and step excitations. A high order "nite-element
methodology is applied within the non-linear elastic, linear aerodynamic theories
and a dynamic analysis is performed on a reference structural model (simply
supported isotropic square panel). The results which substantiate this study show
that during applied excitation the pattern of the motion is changed into damped or
limit-cycle oscillations having non-zero mean value. There are also conditions that
could increase limit-cycle #utter amplitudes during excitation and these cases need
careful investigations for a reliable structural design.
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1. INTRODUCTION

Dynamics and stability of aircraft structures regularly involve non-linear
phenomena which can be investigated only through advanced methods of large
de#ections theory. It is already known that if a panel substructure exposed to
aerodynamic forces is also subjected to thermal stresses (due to kinetic heating of
the supersonic #ow), the non-linear aerothermoelastic behaviour becomes complex
even for a relatively simple case [1] (see Figure 1 for a one-dimensional non-linear
structural panel model). In the absence of #uid #ow, but at su$ciently large
compressive load, the plate will buckle into a statically deformed shape whilst, in
contrast, for no compressive load, but with a #uid #ow of su$ciently large velocity,
the plate will #utter with a periodic motion. With both compressive load and #uid
#ow, chaotic motion may take place.

The general con"guration (Figure 2) involves a rectangular panel substructure
with "xed edges (clamped or simply supported, with completely immovable
in-plane displacements at the edges: u (0, y)"u(a, y)"l(x, 0)"l(x, b)"0), having
022-460X/99/300917#19 $30.00/0 ( 1999 Academic Press



Figure 1. Beam-model for panel #utter.

Figure 2. General model for non-linear panel #utter.
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the external surface exposed to supersonic #ow and the other side facing a cavity.
Usually the de#ection is the order of plate thickness, but in Figures 1 and 2 it is
shown at a greatly exaggerated scale for clarity. The non-linear structural e!ect,
resulting from the in-plane stretching stresses induced by the large amplitudes
of the out-of-plane motion, governs the aeroelastic behaviour. Since the
tension increases at increasing de#ections and remains positive for any sign of the
amplitude, a limited aeroelastic response arises at supercritical dynamic pressures.
A linear analysis of this case could o!er incomplete or erroneous information:
critical dynamic pressure, frequency of vibration, and mode shape at the instability
can be determined, but usually this yields no direct information about panel
de#ection and stresses.

The phenomenon has received growing interest due to the development of
aircraft and missiles which operate at supersonic speeds. The earliest reported
failures that can be attributed to panel #utter were those of the German V-2 rockets
during the World War II [2]. Even recently cracks were found in about half of the
laminated composite skin of the F-117A stealth "ghter [3].

A systematic analysis of the phenomenon began during the 1960s. At that time,
the solutions of the non-linear isotropic panel #utter were found usually through
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the use of Galerkin's method in the spatial domain and subsequently by
numerical integration. Dowell's study [4] provides an overview of this classical
method. The next step in the methodological approach was the application of
the "nite-element method (FEM), "rstly to the study of the linear problem [5] and
then the extension to the non-linear oscillations of two-dimensional isotropic
panels [6, 7] and three-dimensional isotropic plates [8, 9]. Houbolt [10] was the
"rst author who took into account the thermal buckling e!ect due to the
temperature di!erence between panel and its supports. Usually a constant
temperature distribution was considered, but later, in addition to the #utter of
2D- and 3D-isotropic plates, Xue and Mei [11] also considered the e!ects of
arbitrary temperatures.

Recently, a number of studies focused on the non-linear #utter of composite
panels (e.g. references [12, 13]). Also, an important research in the "eld of control
and suppression of the non-linear panel #utter is beginning to be developed.
Successful application of piezoelectric actuation in this area has already been
reported by Mei et al. [14}16].

Until now, no signi"cant work has dealt with the e!ect of the external forces on
the panel #utter behaviour. By considering constant static pressure di!erential over
the simple model from Figure 1, Dowell [1] concluded that there arises a sti!ening
e!ect of the plate so that the #utter is completely suppressed. This paper extends the
analysis to more complex loads in the form of pulse and step excitation. The pulse
pressure could characterize the external loading during launching the missiles
originally attached under the wing (Figure 3). The most exposed area is adjacent
to the a%ux during launch, but the phenomenon can also cause structural
damage during the acceleration of the missile. For any weapon it is necessary to
know the blast pressure characteristic in order to certify the reliability of the
exposed local structure. Experimental validation involves ground tests in which the
structure is subjected to pulse forces using mechanical exciters. That is why a more
realistic analysis, which includes both aerothermoelastic conditions and external
excitation, needs to be addressed. This study investigates the dynamic behaviour
which might have implications for the stability and reliability of the structural
system.
Figure 3. Skew of the local substructure subjected to external out-of-plane pressures.



920 G. SURACE AND R. UDRESCU
2. GOVERNING EQUATIONS

An exhaustive formulation of the analytical model within the non-linear elastic
and aerodynamic theories can be found in Dowell's monograph [17]. The following
considerations show the main steps in modelling the aerothermoelastic problem
and its formulation within the "nite-element method (FEM).

It is known that the stresses arising in an isotropic Hookean plate (having
bending rigidity D, Young's modulus E, Poisson's coe$cient l and coe$cient of
thermal expansion a) subjected to uniform temperature di!erence D¹ can be
written as the sum of the tension created by the stretching of the plate due to
bending and the thermal applied in-plane load:
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The von Karman non-linear strain}displacement relations for a general plate
element undergoing both extension and bending at any point z is a sum of
membrane and change of curvature strain components:

e
xx
"

Lu
Lx

#

1
2 A

Lw
LxB

2
!z

L2w
Lx2

"e
xx0

!z
L2w
Lx2

,

e
yy
"

Ll
Ly

#

1
2 A

Lw
LyB

2
!z

L2w
Ly2

"e
yy0

!z
L2w
Ly2

,

e
xy
"

Ll
Lx

#

Lu
Ly

#

Lw
Lx

Lw
Ly

!2z
L2w
LxLy

"e
xy0

!2z
L2w
LxLy

. (2)

Denoting N
x
, N

y
and N

xy
the normal and shear tensions, respectively as

N
x
"P

h@2

~h@2

p
xx

dz,

N
y
"P

h@2

~h@2

p
yy

dz,

N
xy
"P

h@2

~h@2

p
xy

dz (3)

these can be used in an expression of the strain energy as a sum of stretching and
pure bending components:
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The two terms of the strain energy have been identi"ed as having the following
expressions:
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The governing equation of the general aeroelastic model is obtained through the
application of Hamilton's principle stating an equilibrium between the variation of
kinetic energy, strain energy, and the virtual work done by the several aerodynamic
pressures:

P (d¹!d;#d=) dt"0. (7)

For a rectangular isotropic plate the derivation of equation of equilibrium is
detailed by Dowell in reference [17] and may be written in the form
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where Dp
s
and Dp

a
are the static and aerodynamic pressures respectively.

The simplest approximation of the aerodynamic forces valid for the domain of
hypersonic velocities is su$cient for predicting the aerodynamic terms at high
Mach numbers. Moreover, Bailie and McFeely [18] have shown that their results
in panel #utter analysis obtained using a full unsteady hypersonic theory agree
closely with the results of this approximate theory. The simpli"ed formula of the
aerodynamic pressure within the "rst order &&piston theory'' [2, 4, 17] obtained
supposing the air jet #owing in the x direction has the expression
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is the free-stream air#ow speed and w is the transverse displace-
ment of panel.

The "nite-element formulation of the general aerothermoelastic equation can be
obtained by using the principle of virtual displacement, stating that if a compatible
variation of the displacements dw of a structural "nite element with volume loads
p
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s
, and inner stresses r takes place, then the inner virtual

work must equal the virtual work done by the loads:
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By summing up the contributions from all the elements and applying the kinematic
boundary conditions, the global system equations of motion for a given rectangular
panel can be written in a classical matrix form (see also references [11, 13]) which
includes separately the plate and membrane terms (denoted by the subscripts &&b''
and &&m'' respectively):
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where M, B, A and K are the mass, aerodynamic damping, aerodynamic in#uence,
and linear sti!ness matrices, respectively, K

g
is the geometric sti!ness due to

thermal forces, K
1

and K
2

are the non-linear sti!ness matrices that depend linearly
and quadratically on the system nodal displacement vector W, respectively, P

S
is

the externally applied out-of-plane load vector, assumed as transverse-distributed
pressure with non-dimensional amplitude p, de"ned by Dowell's notation. In
equation (11) the non-dimensionality proposed by Dowell [4] (denoted by
superscript &&o'') is obtained by using dimensionless time q, de#ection=, dynamic
pressure jr, buckling loads p
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This has the advantages of expressing the various results in a compact form and
establishes scaling laws to extrapolate results for other physical situations. If the
edges are completely restrained against the in-plane motion, the in-plane stress
resultants NDT

x
and NDT

y
are equal and the buckling parameters for a square panel of

length a are equal p
x
"p

y
and are denoted uniquely by p

x
.

The "nite-element model proposed by the authors has already been used
in performing the classical analysis [19] of the non-linear panel #utter. Mainly,
it consists of the Argyris' high order triangular "nite element TUBA6 and
TRIM6 [20] (fully compatible elements for the out-of-plane w and,
respectively, in-plane u, l displacements, respectively, based on the natural
geometry concept).

Two nets of identical topology and material properties create the "nite-element
model. The "rst is composed of "fth order (six nodes) triangular plate elements. The
vector w

b
of 21 nodal degrees of freedom (d.o.f.) of this element consists of

displacement w, all "rst and second derivatives w
,x

, w
,y
, w

,xx
, w

,xy
, w

,yy
at the

vertices (for satisfying the continuity condition in curvature) and the normal
derivative w at the middle-points of the edges. The plate element has #exural
,n
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sti!ness and can be loaded by two-dimensional forces (mostly by internal bending
and torsional moments and by transverse shears).

The other is composed of a second order triangular membrane elements. The
corresponding vector w

m
contains 12 nodal degrees of freedom per element

(in-plane displacements u and v at each node). This element has no #exural sti!ness
and carries loads by axial and central shear forces.

In total there are 33 nodal degrees of freedom per complex plate-membrane
element. Detailed presentations of the computational techniques including the
matrix formulation of each term of the general equation (11) can be found in
reference [21].

3. RESULTS

The numerical study is performed by using an original computational program
(written in FORTRAN, with an additional MATHEMATICA module) which has
proved its usefulness in solving panel #utter problems of increasing complexity.
These included preliminary accuracy tests for the linear elastic, dynamic, and
buckling problems of plates under various boundary conditions from which an
optimal FE mesh (Figure 4 shows an eight complex plate-membrane triangular
elements mesh) resulted with a reduced number of active degrees of freedom of the
global displacement vector W: 54 d.o.f.s for a simply supported isotropic square
panel.

Also the linear aeroelastic problem (critical dynamic pressure) and the e!ect of
the non-linear elasticity have been investigated with improved acuracy [22]. This
Figure 4. FE mesh. d*modes with eight d.o.f.s: u, v, w, w
,x
, w

,y
, w

,xx
, w

,xy
, w

,yy
; s2modes with

three d.o.f.s: u, v, w
n



Figure 5. Limit-cycle oscillations of the panel (jr"800, D¹/D¹
cr
"0).
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e!ect involves a limited aeroelastic response limit cycle #utter (Figure 5) arising at
supercritical dynamic pressures.

The complete behaviour of the simply supported isotropic square panel under
uniform temperature change D¹ (usually in the supercritical buckling domain
D¹'D¹

cr
) arising between panel and its supports at high supersonic #ow is

represented in the classical map of stability boundaries (Figure 6). This is governed
by the non-dimensional parameters of compressive load p

x
and dynamic pressure

jr. Performing detailed numerical investigation with a "ne variation of parameters,
as well as integration over an extended time-span, the results con"rmed similar
maps [4, 11], having four stability regions.

This classical analysis deals with the panel #utter phenomenon describing
self-excited oscillations. The new approach now searches for the dynamic
behaviour whilst applying external excitation on this model. The investigations
are performed on the same structural model by adding external out-of-plane
distributed forces in the non-linear aerothermoelastic equation system (11). The
models of mono and periodic pulses, and step pressures are taken into account.
The non-dimensional damping parameter is set to d/M

=
"0)01 and the in-plane

inertia term M0 has been neglected. The equation is integrated step-by-step for

mm



Figure 6. Map of the aerothermoelastic stability boundaries.
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certain thermal and dynamic pressure conditions (p
x
/2n"!D¹/D¹

cr
and jr,

respectively), and external loading. Non-dimensional solutions (dynamic responses
at the centre point of the panel, amplitude scaled to panel thickness, dimensionless
time and pressure, corresponding to the Dowell's notations) of each stability region
are investigated in time domain and signi"cant results are shown together with the
excitation (graphic below the dynamic response). Although the mid-point of the
plate is not the location of the maximum amplitude which tends to be at the trailing
edge (see Figure 5), the pattern of the motion remains the same. The computational
program o!ers capabilities for multiple analyses by combining various parameters
(p

x
/2n"!D¹/D¹

cr
and jr) with excitations. The following results are obtained by

taking into account an example of maximum level of the pressure parameter
(p"5)2) as representative for all stability areas of a square panel with
thickness/length ratio h/a"0)01.

The aeroelastic responses due to pulse excitation in limit-cycle oscillations (LCO)
domain (2nd region in Figure 6) are presented in Figures 7, and 8 for cases without
and with the thermal e!ect respectively. The pattern of the motions (LCO) remains
the same in both cases after the pulse input, but during pulse excitation the
behaviours di!er; the pulse damps the vibration in the "rst case (Figure 7) and the
oscillation continues in the second case (Figure 8). This observation is valid also in
the case of periodic pulses (Figures 9, and 10) at the same #ight conditions. In the
case of step excitation without thermal e!ect (Figure 11), the presence of the
out-of-plane pressures has a damping e!ect on the vibrations, determining a static
deformed shape of the panel. This sti!ening e!ect, su$ciently so that #utter
is completely suppressed, has already been con"rmed by Dowell [1] for the
one-dimensional structural model. But the presence of the thermal buckling loads
emphasises another interesting phenomenon (Figure 12); the #utter behaviour is
maintained, and the LCO amplitudes even increase compared with the initial



Figure 7. Dynamic behaviour during pulse pressure, LCO-domain (D¹/D¹
cr
"0, jr"600).

Figure 8. Dynamic behaviour during pulse pressure, LCO-domain (D¹/D¹
cr
"1, jr"600).
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Figure 9. Dynamic behaviour during periodic pulses, LCO-domain (D¹/D¹
cr
"0, jr"600).

Figure 10. Dynamic behaviour during pulses, LCO-domain (D¹/D¹
cr
"1, jr"600).
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Figure 11. Dynamic behaviour during step pressure, LCO-domain (D¹/D¹
cr
"0, jr"600).

Figure 12. Dynamic behaviour during step pressure, LCO-domain (D¹/D¹
cr
"1, jr"600).
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motion. Also the oscillations are shifted during applying out-of-plane loads. These
behaviours can be better understood by investigating the corresponding phase
plots of the motions under step excitation. Thus, the case of zero-in-plane load is
shown in Figure 13 where the ellipse centred about the origin is the trajectory of the
initial limit-cycle oscillation. As the pressure is increased, the ellipse decreases in
size, moving to the left and "nally collapses completely to a point. The inclusion of
temperature di!erence (Figure 14) shows that the initial ellipse centred about the
origin (the trajectory of LCO motion before excitation) is increasing in size during
excitation, moving to the left and destroying the symmetry until a closed curve is
stabilized.

The chaotic domain is investigated in Figures 15}17. The pulse excitation does
not change the pattern of the motion (Figure 15), but the step pressures could have
an attenuation e!ect on the oscillations (Figure 16) which are also shifted to
a deformed shape of the panel (the mid-position of vibration is not zero). At small
dynamic pressures the vibrations become smaller in amplitude (Figure 16) com-
pared to the case of large dynamic pressures (Figure 17). It should be noted that the
chaotic motion is sensitive to the initial conditions and small changes of the initial
disturbance amplitude determine new patterns of motion. These results give
qualitative information about the dynamic behaviour.

The domains of the #at and buckled panel (1st and 3rd, respectively, in Figure 6)
also remain stable in the case of pulse excitations (see Figures 18 and 19) because
the applied external loads have the e!ect of a perturbation on a damped system.
Figure 13. Phase plane plot: e!ect of step pressure (D¹/D¹
cr
"0, jr"600).



Figure 14. Phase plane plot: e!ect of step pressure (D¹/D¹
cr
"1, jr"600).

Figure 15. Dynamic behaviour during pulse pressure, chaotic-domain (D¹/D¹
cr
"3, jr"300).
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Figure 16. Dynamic behaviour during step pressure, chaotic-domain (D¹/D¹
cr
"3, jr"300).

Figure 17. Dynamic behaviour during step pressure, chaotic-domain (D¹/D¹
cr
"2.5, jr"500).
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Figure 18. Dynamic behaviour during pulse pressure, stable-#at panel domain (D¹/D¹
cr
"1, jr"300).

Figure 19. Dynamic behaviour during pulse pressure, stable-buckled panel domain (D¹/D¹
cr
"2, jr"150).
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TABLE 1

h/a Aluminium alloy Steel

0)004 t (s)"0)161q t (s)"0)159q
Dp

s
(Pa)"1)724p Dp

s
(Pa)"4)926p

0)005 t (s)"0)129q t (s)"0)127q
*p

s
(Pa)"4)347p Dp

s
(Pa)"12)019p

0)01 t (s)"0)0645q t (s)"0)0637q
Dp

s
(Pa)"67)567p Dp

s
(Pa)"192)30p
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The above dimensionless analysis gives information about the qualitative e!ects
of external excitations on the pattern of the motion resulted; oscillations having
amplitude scaled to panel thickness, &frequency'' related to non-dimensional time q,
non-dimensional pressure p. In order to have quantitative information it is
necessary to perform the dimensional analysis by correlating the dimensionless
parameters (time q and pressure p) with data of panel geometry and material. Thus,
the dimensional values of time t (s) and pressure Dp

s
(Pa) can be extracted from the

Dowell's equations (12):

t (s)"
a2

h S
12(1!l2)o

E
q (13)

and

Dp
s
(Pa)"

E
12(1!l2) A

h
aB

4
p (14)

respectively.
Two materials, aluminium alloy (E"0)735]1011 Pa, o

A-
"2767 kg/m3) and

stainless steel (E"2)1]1011 Pa, o
S5
"7800 kg/m3), respectively, are used as

examples with three values of thickness (h/a"0)004; 0)005; 0)01) of isotropic
square panels (a"1 m). Table 1 shows the scale factors for dimensional time and
pressure axes.

Examination of these results shows that a relatively small amplitude of external
pressure can change the pattern of the motion. Of course, the nearest local
substructure exposed to the blast pressure (which is usually signi"cant greater) is
strongly sti!ened, but the loading e!ects during ignition, launch and acceleration
can in#uence a wide structural area.

4. CONCLUSIONS

The model of the non-linear panel #utter has been extended to the case of
external excitations due to the pulse and step out-of-plane pressures that could
appear on local structures during launch of missiles at high speeds. A high order
"nite-element methodology has been applied within the non-linear elastic, linear
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aerodynamic theories and a dynamic analysis has been performed on a reference
structural model (simply supported isotropic square panel).

The results which substantiate this study show that in most cases the pattern
of the motion is changed during applied excitation into damped or limit-cycle
oscillations de#ected from its #at state. There are also conditions that could
increase limit-cycle #utter amplitudes during excitation and these cases need careful
investigation for a reliable structural design of high-speed vehicles.

ACKNOWLEDGMENT

This work has been supported by a grant from the Italian Consiglio Nazionale
delle Ricerche, under the NATO Senior Guest Fellowship Programme. The
Romanian author wishes to thank the Department of Aeronautical and Space
Engineering of the POLITECNICO DI TORINO for the computer facilities and
for the help in preparing this manuscript.

REFERENCES

1. E. H. DOWELL and M. ILGAMOV 1988 Studies in Nonlinear Aeroelasticity. Berlin:
Springer.

2. R. L. BISPLINGHOFF and H. ASHLEY 1962 Principles of Aeroelasticity. New York: Wiley.
3. R. BACKER 1992 Plenary Session 8 AIAA Dynamics Specialists Conference, Dallas.

F-117A structures and dynamics design.
4. E. H. DOWELL 1970 AIAA Journal 8, 385}399. Panel #utter: a review of the aeroelastic

stability of plates and shells.
5. M. D. OLSON 1970 AIAA Journal 8, 747}752. Some #utter solutions using "nite

elements.
6. C. MEI 1977 AIAA Journal 15, 1107}1110. A "nite element approach for nonlinear

panel #utter.
7. C. E. GRAY, C. MEI and C. P. SHORE 1991 AIAA Journal 29, 290}298. Finite-element

method for large-amplitude two-dimensional panel #utter at hypersonic speeds.
8. C. MEI and H. C. WANG 1982 Proceedings of the International Conference on Finite

Element Method, Shanghai, China, New >ork: Gordon & Breach, 944}951. Finite
element analysis of large amplitude supersonic #utter of panels.

9. A. D. HAN and T. Y. YANG 1983 AIAA Journal 21, 1453}1461. Nonlinear panel #utter
using high-order triangular "nite elements.

10. J. C. HOUBOLT 1958 Ph.D. ¹hesis Eideno~ ssischen ¹echnichen Hochschule, Swiss Federal
Inst. of ¹echnology, Zu~ rich, Switzerland. A study of several aerothermoelastic problems
of aircraft structures in high-speed #ight.

11. D. Y. XUE and C. MEI 1993 AIAA Journal 31, 154}162. Finite element nonlinear panel
#utter with arbitrary temperatures in supersonic #ow.

12. R. I. DIXON and C. MEI 1993 AIAA Journal 31, 701}707. Finite element analysis of
large-amplitude panel #utter of thin laminates.

13. R. C. ZHOU, Y. XUE and C. MEI 1994 AIAA Journal 32, 2044}2052. Finite element time
domain}modal formulation for nonlinear #utter of composite panels.

14. Z. LAI, D. XUE, J-K. HUANG and C. MEI 1995 Journal of Intelligent Material Systems and
Structures 6, 274}282. Panel #utter limit-cycle suppression with piezoelectric actuation.

15. R. C. ZHOU, Z. LAI, D. XUE, J-K. HUANG and C. MEI 1995 AIAA Journal 33, 1098}1105.
Suppression of nonlinear panel #utter with piezoelectric actuators using "nite element
method.



FLUTTERING PANELS EXCITED BY EXTERNAL FORCES 935
16. R. C. ZHOU, C. MEI and J-K. HUANG 1996 AIAA Journal 34, 347}357. Suppression of
nonlinear panel #utter at supersonic speeds and elevated temperatures.

17. E. H. DOWELL 1974 Aeroelasticity of Plates and Shells. Dordrecht: Kluwer Academic
Publishers.

18. J. A. BAILIE and J. E. MCFEELY 1968 AIAA Journal 6, 332}337. Panel #utter in
hypersonic #ow.

19. R. UDRESCU 1998 A Collection of ¹echnical Papers of the 39th AIAA/ASME/
ASCE/AHS/ACS Structures, Structural Dynamics and Materials Conference 2,
1252}1262, AIAA paper d98}1843. A higher "nite element model in nonlinear panel
#utter analysis.

20. J. ARGYRIS and H. P. MLEJNEK 1986}1988 Die Metode der Finiten Elementen (3 vols.).
Braunschweig/=iesbaden.

21. J. ARGYRIS and R. UDRESCU 1993 ¹echnical Report, Institute for Computer Applications,
;niversity of Stuttgart. Nonlinear panel #utter on high-order FE model}natural
approach.

22. R. UDRESCU 1996 Ph.D. Dissertation, Aerospace Department, 00Politehnica11 ;niversity of
Bucharest. Contributions to the aeroelasticity of panels modeled by high-order "nite
elements (in Romanian).


	1. INTRODUCTION
	Figure 1
	Figure 2
	Figure 3

	2. GOVERNING EQUATIONS
	3. RESULTS
	TABLE 1
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19

	4. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

